Pengaruh Mutasi Gen Fukutin terhadap Perkembangan Congenital Muscular Dystrophy

Pascal Adventra Tandiabang, Ch Tri Nuryana, Sefry Markswel Pantow

Sari


Congenital Muscular Dystrophy (CMD) adalah kelompok penyakit genetik langka yang ditandai oleh kelemahan otot yang terjadi sejak lahir dan sering melibatkan multisistem, termasuk sistem saraf. Mutasi gen Fukutin berperan signifikan dalam patogenesis berbagai subtipe CMD. Fukutin berperan dalam glikosilasi alpha-dystroglycan (?-DG), suatu proses yang penting untuk stabilitas sarkolema otot. Gangguan glikosilasi akibat mutasi Fukutin menyebabkan kelemahan otot progresif, anomali otak seperti cobblestone lissencephaly, hingga disfungsi multisistem. Teknologi molekuler, seperti Whole Exome Sequencing (WES), membantu mengidentifikasi kasus global mutasi ini. Artikel ini mengeksplorasi mekanisme molekuler, patogenesis, dan spektrum klinis CMD terkait Fukutin, memberikan wawasan untuk pemahaman lebih dalam dan pengembangan terapi.

Kata Kunci


mutasi; fukutin; muskular; distrofi; dystroglycan

Teks Lengkap:

PDF

Referensi


Pasrija D, Tadi P. Congenital muscular dystrophy. StatPearls. 2023 Jul 3; Didapat dari: https://www.ncbi.nlm.nih.gov/books/NBK558956/

Mah JK, Korngut L, Dykeman J, Day L, Pringsheim T, Jette

N. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord. 2014;24:482-91.

Brockington M, Blake DJ, Prandini P, Brown SC, Torelli S, Benson MA, dkk. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin ?2 deficiency and abnormal glycosylation of ?-dystroglycan. Am J Hum Genet 2001;69:1198-209.

Agarwal A, Sabat S, Kanekar S. Fukuyama congenital muscular dystrophy. Cureus. Diakses pada 4 Februari 2022. Didapat dari: https://www.cureus.com/articles/85412-fukuyama-congenital- muscular-dystrophy

Mercuri E, Pane M. Chapter 62 - Neonatal neuromuscular disorders. Dalam: Christine A. Gleason, Devaskar SU, penyuntig. Avery’s diseases of the newborn (ninth edition). Ninth Edit. Philadelpia: W.B. Saunders; 2012. h. 892-900. Didapat dari: 0100629

Sharma PK, Jerosha S, Subramonian SG, Raja R S, RK K. Cobblestone lissencephaly (Type II), clinical, and neuroimaging: A case report and literature review. Radiol Case Reports. 2024;19:4794-803.

Toda T, Chiyonobu T, Xiong H, Tachikawa M, Kobayashi K, Manya H, dkk. Fukutin and alpha-dystroglycanopathies. Acta Myol myopathies cardiomyopathies Off J Mediterr Soc Myol 2005;24:60-3.

Ceyhan O, Talim B, Beggs AH, Topaloglu H. P.1.12 Whole exome sequencing as a genetic diagnostic tool for congenital muscular dystrophies. Neuromuscul Disord 2013 ;23:745.

Oldstone MBA, Campbell KP. Decoding arenavirus pathogenesis: Essential roles for alpha-dystroglycan-virus interactions and the immune response. Virology. 2011 15;411:170-9.

Riisager M, Duno M, Hansen FJ, Krag TO, Vissing CR, Vissing J. A new mutation of the fukutin gene causing late- onset limb girdle muscular dystrophy. Neuromuscul Disord 2013;23:562-7.

NCBI. FKTN fukutin [Homo sapiens (human)] - Gene - NCBI. National Center for Biotechnology Information. 2024. Didapat dari: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearc h&Term=2218

Tachikawa M, Kanagawa M, Yu CC, Kobayashi K, Toda T. Mislocalization of fukutin protein by disease-causing missense mutations can be rescued with treatments directed at folding amelioration. J Biol Chem 2012 9;287:8398-406.

Holmberg J, Durbeej M. Laminin-211 in skeletal muscle function. Cell Adh Migr 2013 Jan 1;7(1):111-21. Doi.org/10.4161/cam.22618

Yamamoto T, Kato Y, Shibata N, Sawada T, Osawa M, Kobayashi M. A role of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in cancer cells: a possible role to suppress cell proliferation. Int J Exp Pathol 2008;89:332.

Haro C, Uribe ML, Quereda C, Cruces J, Martín-Nieto J. Expression in retinal neurons of fukutin and FKRP, the protein products of two dystroglycanopathy-causative genes. Mol Vis 2018 20;24:43.

Combs AC, Ervasti JM. Enhanced laminin binding by ?-dystroglycan after enzymatic deglycosylation. Biochem J 2005;390:303.

Kabaeva Z, Meekhof KE, Michele DE. Sarcolemma instability during mechanical activity in Largemyd cardiac myocytes with loss of dystroglycan extracellular matrix receptor function. Hum Mol Genet 2011;20:3346.

Devisme L, Bouchet C, Gonzals M, Alanio E, Bazin A, Bessires B, dkk. Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 2012;135:469-82.

Silfeler I, Arica V, Davran R, Tutanc M, Basarslan F. Fukuyama Congenital Muscular Dystrophy. Pakistan J Med Sci 2019.;28:519-21.

Chang W, Winder TL, LeDuc CA, Simpson LL, Millar WS, Dungan J, dkk. Founder Fukutin mutation causes Walker- Warburg syndrome in four Ashkenazi Jewish families. Prenat Diagn 2009;29:560-9.

Khalaf SS, Tareef R Bin. Walker-Warburg Syndrome. J Am Assoc Pediatr Ophthalmol Strabismus. 2006 1;10:486-8. Doi.org/10.1016/j.jaapos.2006.06.016

Satz JS, Barresi R, Durbeej M, Willer T, Turner A, Moore SA, dkk. Brain and eye malformations resembling Walker- Warburg syndrome are recapitulated in mice by dystroglycan deletion in the epiblast. J Neurosci Off J Soc Neurosci 2008;28:10567-75.

Kato M, Dobyns WB. Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 2003;12:R89-96.

Smogavec M, Zschüntzsch J, Kress W, Mohr J, Hellen P, Zoll B, dkk. Novel fukutin mutations in limb-girdle muscular dystrophy type 2M with childhood onset. Neurol Genet 2017;3:e167.

Villarreal-Molina MT, Rosas-Madrigal S, López-Mora E, Calderón- Avila AL, Rodríguez-Zanella H, Romero-Hidalgo S, dkk. Homozygous fukutin missense mutation in two mexican siblings with dilated cardiomyopathy. Rev Investig Clin 2021;73.

Cotarelo RP, Valero MC, Prados B, Peña A, Rodríguez L, Fano O, dkk. Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker- Warburg syndrome. Clin Genet 2008;73:139-45.

Choi YA, Chun SM, Kim Y, Shin HI. Lower extremity joint contracture according to ambulatory status in children with Duchenne muscular dystrophy. BMC Musculoskelet Disord. 2018;19:287.

Verrotti A, Spalice A, Ursitti F, Papetti L, Mariani R, Castronovo A, dkk. New trends in neuronal migration disorders. Eur J Paediatr Neurol 2010;14:1-12.

Lim BC, Ki C-S, Kim J-W, Cho A, Kim MJ, Hwang H, dkk. Fukutin mutations in congenital muscular dystrophies with defective glycosylation of dystroglycan in Korea. Neuromuscul Disord 2010;20:524-30.

Kato Z, Morimoto M, Orii KE, Kato T, Kondo N. Developmental changes of radiological findings in Fukuyama-type congenital muscular dystrophy. Pediatr Radiol 2010;40 Suppl 1(SUPPL.1).

Sato T, Awano H, Ishiguro K, Shichiji M, Murakami T, Shirakawa T, dkk. Urinary titin as a biomarker in Fukuyama congenital muscular dystrophy. Neuromuscul Disord. 2021;31:194-7.

Yoshioka M, Sugie K, Nishino I, Toda T. [Immunohistochemical studies of a variant of congenital muscular dystrophy]. No to hattatsu = Brain Dev 2004 ;36:55-9.

Ceyhan-Birsoy O, Talim B, Swanson LC, Karakaya M, Graff

MA, Beggs AH, dkk. Whole exome sequencing reveals DYSF, FKTN, and ISPD mutations in congenital muscular dystrophy without brain or eye involvement. J Neuromuscul Dis 2015;2:87-92.

Brockington M, Blake DJ, Prandini P, Brown SC, Torelli S, Benson MA, dkk. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet 2001;9:1198-209.

Murakami T, Sato T, Adachi M, Ishiguro K, Shichiji M, Tachimori H, dkk. Efficacy of steroid therapy for Fukuyama congenital muscular dystrophy. Sci Rep 2021 ;11:24229.

Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs 2016;4:169-83.

Xu L, Lu PJ, Wang C-H, Keramaris E, Qiao C, Xiao B, dkk. Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of ?-dystroglycan and improves muscle functions. Mol Ther 2013 ;21:1832-40.

Kanagawa M, Toda T. Muscular dystrophy with ribitol- phosphate deficiency: A novel post-translational mechanism in dystroglycanopathy. J Neuromuscul Dis 2017;4:259-67.

Sato T, Murakami T, Ishiguro K, Shichiji M, Saito K, Osawa M, dkk. Respiratory management of patients with Fukuyama congenital muscular dystrophy. Brain Dev 2016 ;38:324-30.

Malinow I, Fong DC, Miyamoto M, Badran S, Hong CC. Pediatric dilated cardiomyopathy: a review of current clinical approaches and pathogenesis. Front Pediatr 2024;12:1-13. Doi.org/10.3389/fped.2024.1404942




DOI: http://dx.doi.org/10.14238/sp27.1.2025.65-72

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

##submission.license.cc.by-nc-sa4.footer##

Informasi Editorial:
Badan Penerbit Ikatan Dokter Anak Indonesia
Jl. Salemba I No 5, Jakarta 10430, Indonesia
Phone/Fax: +62-21-3912577
Email: editorial [at] saripediatri.org

Lisensi Creative Commons
Sari Pediatri diterbitkan oleh Badan Penerbit Ikatan Dokter Anak Indonesia
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.

Statcounter